organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$(R_{\rm P}, R_{\rm P})$ -Bis[(3-menthyloxy)(phenyl)phosphinoyl] disulfide

Zhong-Yuan Xu and Chang-Qiu Zhao*

College of Chemistry and Chemical Engineering, Liaocheng University, Shandong 252059, People's Republic of China Correspondence e-mail: literabc@hotmail.com

Received 6 September 2011; accepted 19 September 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.041; wR factor = 0.080; data-to-parameter ratio = 16.2.

The molecule of the title compound, C₃₂H₄₈O₄P₂S₂, has 2 symmetry, the mid-point of the S-S bond being located on a twofold rotation axis. The two tetrahedral P units are linked by a S–S bond with a P–S–S–P torsion angle is $131.19 (6)^{\circ}$. The dihedral angle between two phenyl rings is $12.66 (13)^{\circ}$. The cyclohexane ring of the menthoxyl group displays a chair conformation. Weak intermolecular C-H···O hydrogen bonding is present in the crystal structure.

Related literature

For general background to chiral phosphorus compounds, see: Perlikowska & Daran (2004).

Experimental

Crystal data C32H48O4P2S2 $M_r = 622.76$

Orthorhombic, P21212 a = 9.9910 (9) Å

b = 18.9100 (17) Åc = 8.9747 (7) Å V = 1695.6 (3) Å³ Z = 2

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.895, T_{\max} = 0.956$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.080$ S = 0.912989 reflections 184 parameters H-atom parameters constrained

7818 measured reflections 2989 independent reflections 2141 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.043$

Mo $K\alpha$ radiation

 $0.40 \times 0.28 \times 0.16 \text{ mm}$

 $\mu = 0.28 \text{ mm}^{-1}$

T = 298 K

 $\Delta \rho_{\text{max}} = 0.33 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$ Absolute structure: Flack (1983), 1736 Friedel pairs Flack parameter: -0.10 (10)

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C6-H6B\cdots O2^{i}$	0.97	2.59	3.527 (3)	162
Symmetry code: (i) x -	$+\frac{1}{2}$, $-v + \frac{1}{2}$, $-z$			

(1) $x + \frac{1}{2}, -y + \frac{1}{2},$

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We acknowledge financial support by the Natural Science Foundation of China (No. 20772055).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5323).

References

Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

Perlikowska, W. & Daran, I. C. (2004). Tetrahedron Asymmetry, 15, 3519-3529.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supplementary materials

Acta Cryst. (2011). E67, o2802 [doi:10.1107/S1600536811038165]

(*R*_P,*R*_P)-Bis[(3-menthyloxy)(phenyl)phosphinoyl] disulfide

Z.-Y. Xu and C.-Q. Zhao

Comment

Chiral phosphorus compounds have been widely used in both chemistry and biology (Perlikowska & Daran, 2004). The *P*-chiral title compound was synthesized by (R_p)-*O*-menthyl phenylphosphonothioate and sulfuryl chloride. The fully extended substituents phenyl, menthoxy link to phosphorus atom, and the two phosphorus atoms are connected by dithio bond to form two similar *P*-centered irregular tetrahedrons. The angle of O2—P—S1 and O1—P—S1 are 113.31 (9) ° and 95.11 (7) °. Intermolecular C6—H6···O2 hydrogen bonds is observed in the crystal structure (Table 1).

Experimental

Sulfuryl chloride (0.3 mmol) was added to a stirred ether solution of (R_p) -*O*-menthyl phenylphosphonothioate (0.6 mmol) in a Schlenk tube under nitrogen, and the mixture was stirred for 4 h at 273 K. After washing with water and removing solvents, the resulting residue was purified by preparative TLC on silica gel to afford optically pure product. The crystal suit for X-ray diffraction was obtained from recrystallization with ethyl ether.

Refinement

All H atoms attached to C atoms were fixed geometrically and treated as riding with C—H = 0.93 - 0.98 Å, with $U_{iso}(H)$ = 1.5 $U_{eq}(methyl)$ and $U_{iso}(H) = 1.2 U_{eq}(C)$ for all other H atoms.

Figures

Fig. 1. The molecular structure of the compound. H atoms have been omitted for clarity.

(R_P,R_P)-Bis[(2-isopropyl-5- methylcyclohexyloxy)(phenyl)phosphinoyl] disulfide

Crystal data
$C_{32}H_{48}O_4P_2S_2$
$M_r = 622.76$
Orthorhombic, P21212
Hall symbol: P 2 2ab
<i>a</i> = 9.9910 (9) Å
b = 18.9100 (17) Å

F(000) = 668 $D_x = 1.220 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1878 reflections $\theta = 3.1-22.1^\circ$ $\mu = 0.28 \text{ mm}^{-1}$

c = 8.9747 (7) Å	<i>T</i> = 298 K
$V = 1695.6 (3) \text{ Å}^3$	Block, colorless
<i>Z</i> = 2	$0.40\times0.28\times0.16~mm$

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	2989 independent reflections
Radiation source: fine-focus sealed tube	2141 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.043$
φ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 2.2^{\circ}$
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)	$h = -11 \rightarrow 9$
$T_{\min} = 0.895, T_{\max} = 0.956$	$k = -15 \rightarrow 22$
7818 measured reflections	$l = -10 \rightarrow 10$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.041$	H-atom parameters constrained
$wR(F^2) = 0.080$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0327P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.91	$(\Delta/\sigma)_{\rm max} = 0.001$
2989 reflections	$\Delta \rho_{max} = 0.33 \text{ e } \text{\AA}^{-3}$
184 parameters	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$
0 restraints	Absolute structure: Flack (1983), 1736 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: -0.10 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
P1	0.89547 (8)	0.39154 (4)	0.02808 (9)	0.0522 (2)
S1	1.05009 (7)	0.45208 (4)	-0.06827 (9)	0.0569 (2)

01	0.97493 (16)	0.31924 (8)	0.0227 (2)	0.0530 (5)
02	0.76990 (17)	0.39533 (10)	-0.0544 (2)	0.0674 (6)
C1	0.8604 (3)	0.13924 (16)	0.1576 (4)	0.0695 (10)
H1	0.7641	0.1447	0.1399	0.083*
C2	0.9227 (3)	0.21278 (15)	0.1605 (3)	0.0606 (9)
H2A	0.8801	0.2408	0.2376	0.073*
H2B	1.0171	0.2089	0.1847	0.073*
C3	0.9073 (3)	0.24950 (13)	0.0128 (3)	0.0479 (7)
Н3	0.8118	0.2572	-0.0061	0.057*
C4	0.9659 (3)	0.20881 (14)	-0.1165 (3)	0.0494 (7)
H4	1.0612	0.2021	-0.0953	0.059*
C5	0.9012 (3)	0.13521 (15)	-0.1183 (4)	0.0633 (9)
H5A	0.8066	0.1399	-0.1405	0.076*
H5B	0.9417	0.1071	-0.1966	0.076*
C6	0.9178 (3)	0.09692 (14)	0.0308 (4)	0.0694 (9)
H6A	0.8732	0.0514	0.0259	0.083*
H6B	1.0122	0.0885	0.0490	0.083*
C7	0.8786 (5)	0.10092 (19)	0.3060 (5)	0.1305 (18)
H7A	0.8379	0.0550	0.3005	0.196*
H7B	0.8371	0.1278	0.3841	0.196*
H7C	0.9724	0.0958	0.3268	0.196*
C8	0.9561 (3)	0.24793 (17)	-0.2669 (3)	0.0649 (9)
H8	0.9846	0.2967	-0.2479	0.078*
С9	0.8146 (3)	0.2525 (2)	-0.3295 (4)	0.0916 (12)
H9A	0.8159	0.2785	-0.4214	0.137*
H9B	0.7577	0.2762	-0.2592	0.137*
Н9С	0.7811	0.2057	-0.3473	0.137*
C10	1.0536 (4)	0.2180 (2)	-0.3807 (4)	0.0975 (12)
H10A	1.1426	0.2190	-0.3404	0.146*
H10B	1.0505	0.2461	-0.4698	0.146*
H10C	1.0293	0.1701	-0.4037	0.146*
C11	0.8768 (3)	0.41490 (14)	0.2192 (3)	0.0553 (8)
C12	0.9730 (3)	0.39822 (16)	0.3243 (4)	0.0703 (9)
H12	1.0529	0.3774	0.2941	0.084*
C13	0.9515 (5)	0.41225 (17)	0.4747 (4)	0.0896 (11)
H13	1.0163	0.4012	0.5454	0.108*
C14	0.8321 (5)	0.4428 (2)	0.5164 (5)	0.0997 (13)
H14	0.8155	0.4510	0.6169	0.120*
C15	0.7377 (4)	0.4614 (2)	0.4142 (5)	0.0967 (13)
H15	0.6592	0.4836	0.4444	0.116*
C16	0.7594 (3)	0.44701 (18)	0.2661 (4)	0.0765 (10)
H16	0.6944	0.4590	0.1963	0.092*
	•2			

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U ²³
P1	0.0510 (4)	0.0433 (4)	0.0622 (6)	-0.0001 (3)	0.0007 (4)	-0.0039 (4)
S1	0.0600 (5)	0.0421 (4)	0.0685 (6)	0.0028 (4)	0.0114 (4)	-0.0015 (4)

supplementary materials

O1	0.0520 (10)	0.0356 (10)	0.0714 (14)	-0.0035 (8)	-0.0013 (10)	-0.0056 (10)
O2	0.0521 (12)	0.0702 (13)	0.0800 (17)	0.0056 (10)	-0.0127 (11)	-0.0062 (14)
C1	0.081 (3)	0.057 (2)	0.070 (2)	-0.0237 (17)	-0.0024 (19)	0.002 (2)
C2	0.069 (2)	0.0560 (19)	0.057 (2)	-0.0117 (16)	-0.0014 (16)	-0.0027 (17)
C3	0.0434 (14)	0.0371 (14)	0.063 (2)	-0.0067 (12)	-0.0046 (15)	-0.0061 (15)
C4	0.0423 (16)	0.0451 (16)	0.061 (2)	0.0016 (14)	-0.0003 (15)	-0.0056 (15)
C5	0.065 (2)	0.0479 (19)	0.076 (2)	-0.0032 (16)	0.0040 (19)	-0.0192 (18)
C6	0.0625 (19)	0.0420 (17)	0.104 (3)	-0.0090 (15)	-0.011 (2)	0.003 (2)
C7	0.202 (5)	0.096 (3)	0.093 (3)	-0.056 (4)	-0.014 (3)	0.035 (3)
C8	0.076 (2)	0.060 (2)	0.059 (2)	-0.0048 (19)	-0.0015 (19)	-0.0016 (18)
C9	0.082 (3)	0.114 (3)	0.079 (3)	0.001 (2)	-0.016 (2)	0.018 (3)
C10	0.092 (3)	0.131 (3)	0.070 (2)	0.004 (2)	0.025 (2)	-0.004 (2)
C11	0.059 (2)	0.0455 (18)	0.061 (2)	-0.0014 (16)	0.0015 (17)	0.0014 (15)
C12	0.088 (2)	0.058 (2)	0.065 (2)	0.0027 (19)	0.001 (2)	-0.0030 (19)
C13	0.128 (3)	0.074 (2)	0.066 (3)	0.000 (2)	-0.009 (3)	0.003 (2)
C14	0.139 (4)	0.086 (3)	0.074 (3)	-0.011 (3)	0.031 (3)	-0.012 (3)
C15	0.096 (3)	0.104 (3)	0.090 (4)	0.009 (3)	0.030 (3)	-0.028 (3)
C16	0.072 (2)	0.075 (2)	0.082 (3)	0.009 (2)	0.0082 (19)	-0.017 (2)
	(2 0)					
Geometric para	meters (A, °)					
P1—O2		1.4583 (19)	C7-	-H7A	0.960	00
P1—O1		1.5817 (17)	C7-	–H7B	0.960	00
P1-C11		1.781 (3)	C7-	-H7C	0.960	00
P1—S1		2.1083 (10)	C8-	-C10	1.520	0 (4)
S1—S1 ⁱ		2.0703 (14)	C8-	-С9	1.524	4 (4)
O1—C3		1.484 (3)	C8-	-H8	0.980	00
C1—C6		1.505 (4)	C9–	-H9A	0.960	00
C1—C2		1.524 (4)	C9–	-H9B	0.960	00
C1—C7		1.528 (4)	С9-	–Н9С	0.960	00
C1—H1		0.9800	C10	—H10A	0.960	00
C2—C3		1.505 (4)	C10	—H10B	0.960	00
C2—H2A		0.9700	C10	—H10C	0.960	00
C2—H2B		0.9700	C11	—C12	1.383	3 (4)
C3—C4		1.510 (4)	C11	—C16	1.387	7 (4)
С3—Н3		0.9800	C12	—C13	1.392	2 (5)
C4—C5		1.535 (4)	C12	—Н12	0.930	00
C4—C8		1.542 (4)	C13	—C14	1.378	3 (5)
C4—H4		0.9800	C13	—Н13	0.930	00
C5—C6		1.530 (4)	C14	—C15	1.36	l (5)
С5—Н5А		0.9700	C14	—H14	0.930	00
С5—Н5В		0.9700	C15	—C16	1.374	4 (5)
С6—Н6А		0.9700	C15	—H15	0.930	00
С6—Н6В		0.9700	C16	—H16	0.930	00
O2—P1—O1		117.31 (11)	H6A	А—С6—Н6В	108.0)
O2—P1—C11		112.74 (14)	C1-	—С7—Н7А	109.5	5
O1—P1—C11		107.23 (13)	C1-	С7Н7В	109.5	5
O2—P1—S1		113.30 (10)	H7A	—C7—H7В	109.5	5
O1—P1—S1		95.12 (7)	C1-	—С7—Н7С	109.5	5

C11—P1—S1	109.70 (10)	H7A—C7—H7C	109.5
S1 ⁱ —S1—P1	96.96 (5)	H7B—C7—H7C	109.5
C3—O1—P1	122.78 (15)	C10—C8—C9	111.6 (3)
C6—C1—C2	110.0 (3)	C10-C8-C4	111.7 (3)
C6—C1—C7	111.2 (3)	C9—C8—C4	114.1 (3)
C2—C1—C7	111.6 (3)	С10—С8—Н8	106.3
C6—C1—H1	107.9	С9—С8—Н8	106.3
C2—C1—H1	107.9	С4—С8—Н8	106.3
C7—C1—H1	107.9	С8—С9—Н9А	109.5
C3—C2—C1	111.3 (2)	С8—С9—Н9В	109.5
C3—C2—H2A	109.4	Н9А—С9—Н9В	109.5
C1—C2—H2A	109.4	С8—С9—Н9С	109.5
C3—C2—H2B	109.4	Н9А—С9—Н9С	109.5
C1—C2—H2B	109.4	Н9В—С9—Н9С	109.5
H2A—C2—H2B	108.0	C8—C10—H10A	109.5
O1—C3—C2	108.1 (2)	C8—C10—H10B	109.5
O1—C3—C4	108.8 (2)	H10A—C10—H10B	109.5
C2—C3—C4	113.7 (2)	C8—C10—H10C	109.5
O1—C3—H3	108.7	H10A-C10-H10C	109.5
С2—С3—Н3	108.7	H10B-C10-H10C	109.5
С4—С3—Н3	108.7	C12—C11—C16	118.8 (3)
C3—C4—C5	107.9 (2)	C12—C11—P1	121.8 (2)
C3—C4—C8	113.8 (2)	C16—C11—P1	119.3 (3)
C5—C4—C8	113.5 (3)	C11—C12—C13	120.6 (3)
C3—C4—H4	107.1	C11—C12—H12	119.7
C5—C4—H4	107.1	C13—C12—H12	119.7
C8—C4—H4	107.1	C14—C13—C12	118.5 (4)
C6—C5—C4	112.0 (2)	C14—C13—H13	120.7
С6—С5—Н5А	109.2	C12—C13—H13	120.7
С4—С5—Н5А	109.2	C15-C14-C13	121.6 (4)
C6—C5—H5B	109.2	C15—C14—H14	119.2
C4—C5—H5B	109.2	C13—C14—H14	119.2
H5A—C5—H5B	107.9	C14—C15—C16	119.5 (4)
C1—C6—C5	111.6 (2)	C14—C15—H15	120.3
С1—С6—Н6А	109.3	C16—C15—H15	120.3
С5—С6—Н6А	109.3	C15—C16—C11	120.9 (4)
С1—С6—Н6В	109.3	C15—C16—H16	119.6
С5—С6—Н6В	109.3	C11—C16—H16	119.6
O2—P1—S1—S1 ⁱ	56.22 (9)	C4—C5—C6—C1	57.2 (3)
O1— $P1$ — $S1$ — $S1$ ⁱ	178.92 (8)	C3—C4—C8—C10	161.2 (3)
C11—P1—S1—S1 ⁱ	-70.73 (11)	C5—C4—C8—C10	-74.9 (3)
O2—P1—O1—C3	-33.0 (3)	C3—C4—C8—C9	-71.2 (3)
C11—P1—O1—C3	95.0 (2)	C5—C4—C8—C9	52.8 (4)
S1—P1—O1—C3	-152.5 (2)	O2—P1—C11—C12	163.5 (2)
C6—C1—C2—C3	54.6 (4)	O1—P1—C11—C12	32.9 (3)
C7—C1—C2—C3	178.6 (3)	S1—P1—C11—C12	-69.2 (3)
P1	-108.6 (2)	O2—P1—C11—C16	-12.7 (3)
P1	127.4 (2)	O1—P1—C11—C16	-143.3 (2)

supplementary materials

C1—C2—C3—O1	-177.8 (2)	S1—P1—C11—C16	114.6 (2)
C1—C2—C3—C4	-56.8 (3)	C16-C11-C12-C13	1.1 (5)
O1—C3—C4—C5	176.3 (2)	P1-C11-C12-C13	-175.1 (2)
C2—C3—C4—C5	55.8 (3)	C11-C12-C13-C14	0.2 (5)
O1—C3—C4—C8	-56.8 (3)	C12-C13-C14-C15	-2.1 (6)
C2—C3—C4—C8	-177.3 (2)	C13-C14-C15-C16	2.5 (7)
C3—C4—C5—C6	-55.2 (3)	C14-C15-C16-C11	-1.0 (6)
C8—C4—C5—C6	177.7 (3)	C12-C11-C16-C15	-0.8 (5)
C2—C1—C6—C5	-55.2 (3)	P1-C11-C16-C15	175.5 (3)
C7—C1—C6—C5	-179.5 (3)		
Symmetry codes: (i) $-x+2$, $-y+1$, z .			
Hydrogen-bond geometry (Å, °)			

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
C6—H6B····O2 ⁱⁱ	0.97	2.59	3.527 (3)	162.
Symmetry codes: (ii) $x+1/2, -y+1/2, -z$.				

Fig. 1